高二數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)推薦
導(dǎo)數(shù)(Derivative)是微積分中的重要基礎(chǔ)概念。下面是高二數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)推薦,相信這些文字對你會有所幫助的。
一、早期導(dǎo)數(shù)概念----特殊的形式大約在1629年法國數(shù)學(xué)家費(fèi)馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構(gòu)造了差分f(A+E)-f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f'(A)。
二、17世紀(jì)----廣泛使用的“流數(shù)術(shù)”17世紀(jì)生產(chǎn)力的發(fā)展推動了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當(dāng)于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運(yùn)用無窮多項(xiàng)方程的計(jì)算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個比當(dāng)變化趨于零時的極限。
三、19世紀(jì)導(dǎo)數(shù)----逐漸成熟的理論1750年達(dá)朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點(diǎn)可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀(jì)60年代以后魏爾斯特拉斯創(chuàng)造了ε-δ語言對微積分中出現(xiàn)的各種類型的極限重加表達(dá)導(dǎo)數(shù)的定義也就獲得了今天常見的形式。
四、實(shí)無限將異軍突起微積分第二輪初等化或成為可能 微積分學(xué)理論基礎(chǔ)大體可以分為兩個部分。一個是實(shí)無限理論即無限是一個具體的東西一種真實(shí)的存在另一種是潛無限指一種意識形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實(shí)無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個物理學(xué)長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。
高二數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)大家都閱讀完了,導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念,學(xué)好本門課程至關(guān)重要!
(責(zé)任編輯:陳海巖)
分享“高二數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)推薦”到:
- 高二數(shù)學(xué) 知識點(diǎn)的總結(jié)。
- 高二數(shù)學(xué)學(xué)習(xí)方法的八大法則。
- 如何學(xué)好高二的數(shù)學(xué)課門呢?
- 高二數(shù)學(xué)學(xué)習(xí)方法的匯總。
- 數(shù)學(xué)從高二墊底到高考138分,她的成績是
- 高二數(shù)學(xué) 復(fù)習(xí)的3種重要方法
- 高二數(shù)學(xué) 學(xué)習(xí)的方法以及技巧
- 高二數(shù)學(xué)學(xué)法:精選高二數(shù)學(xué)輕松高效學(xué)
- 高二數(shù)學(xué)學(xué)法:高二數(shù)學(xué)學(xué)習(xí)問題自我評
- 數(shù)學(xué)高二知識點(diǎn):簡單隨機(jī)抽樣