高二數(shù)學(xué)重點知識點:參數(shù)方程
下面是育路小編為您整理的高二數(shù)學(xué)重點知識點:參數(shù)方程,希望大家喜歡。
一般地,在平面直角坐標(biāo)系中,如果曲線上任意一點的坐標(biāo)x, y都是某個變數(shù)t的函數(shù):x=f(t),y=g(t), 并且對于t的每一個允許的取值,由方程組確定的點(x,y)都在這條曲線上,那么這個方程就叫做曲線的參數(shù)方程,聯(lián)系變數(shù)x, y的變數(shù)t叫做參變數(shù),簡稱參數(shù)。
圓的參數(shù)方程 x=a+r cosθ y=b+r sinθ (a,b)為圓心坐標(biāo) r為圓半徑 θ為參數(shù)
橢圓的參數(shù)方程 x=a cosθ y=b sinθ a為長半軸 長 b為短半軸長 θ為參數(shù)
雙曲線的參數(shù)方程 x=a secθ (正割) y=b tanθ a為實半軸長 b為虛半軸長 θ為參數(shù)
拋物線的參數(shù)方程 x=2pt^2 y=2pt p表示焦點到準(zhǔn)線的距離 t為參數(shù)
直線的參數(shù)方程 x=x'+tcosa y=y'+tsina , x', y'和a表示直線經(jīng)過(x',y'),且傾斜角為a,t為參數(shù).
以上是為大家提供的高二數(shù)學(xué)重點知識點:參數(shù)方程,希望對您有所幫助。另外數(shù)學(xué)的學(xué)習(xí)不同于其他學(xué)科,講究方法,靈活多變,同學(xué)們還需要在平時多加練習(xí),才能在考試中取得好成績。
(責(zé)任編輯:彭海芝)
分享“高二數(shù)學(xué)重點知識點:參數(shù)方程”到:
- 高二數(shù)學(xué) 知識點的總結(jié)。
- 高二數(shù)學(xué)學(xué)習(xí)方法的八大法則。
- 如何學(xué)好高二的數(shù)學(xué)課門呢?
- 高二數(shù)學(xué)學(xué)習(xí)方法的匯總。
- 數(shù)學(xué)從高二墊底到高考138分,她的成績是
- 高二數(shù)學(xué) 復(fù)習(xí)的3種重要方法
- 高二數(shù)學(xué) 學(xué)習(xí)的方法以及技巧
- 高二數(shù)學(xué)學(xué)法:精選高二數(shù)學(xué)輕松高效學(xué)
- 高二數(shù)學(xué)學(xué)法:高二數(shù)學(xué)學(xué)習(xí)問題自我評
- 數(shù)學(xué)高二知識點:簡單隨機(jī)抽樣