高考數(shù)學一輪復習必備知識點總結(jié)
數(shù)學想要提升一定要注重對基礎的掌握,為此育路習網(wǎng)整理了高考數(shù)學一輪復習必備知識點總結(jié),預?忌梢匀〉脙(yōu)異的成績。
函數(shù)
函數(shù)名稱出自數(shù)學家李善蘭的著作《代數(shù)學》。精品學習網(wǎng)整理了函數(shù)公式總結(jié),幫助廣大高中學生學習數(shù)學知識!
函數(shù)是高中數(shù)學學習的重點,函數(shù)公式眾多,需要我們記憶。下面小編為大家提供高中數(shù)學函數(shù)公式總結(jié),供大家參考。
(1)高中函數(shù)公式的變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。
(2)一次函數(shù):①若兩個變量,間的關(guān)系式可以表示成(為常數(shù),不等于0)的形式,則稱是的一次函數(shù)。②當=0時,稱是的正比例函數(shù)。外語學習網(wǎng)
(3)高中函數(shù)的一次函數(shù)的圖象及性質(zhì)
、侔岩粋函數(shù)的自變量與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。
、谡壤瘮(shù)=的圖象是經(jīng)過原點的一條直線。
、墼谝淮魏瘮(shù)中,當0,O,則經(jīng)2、3、4象限;當0,0時,則經(jīng)1、2、4象限;當0,0時,則經(jīng)1、3、4象限;當0,0時,則經(jīng)1、2、3象限。
、墚0時,的值隨值的增大而增大,當0時,的值隨值的增大而減少。
(4)高中函數(shù)的二次函數(shù):
、僖话闶剑(),對稱軸是
頂點是;
②頂點式:(),對稱軸是頂點是;
③交點式:(),其中(),()是拋物線與x軸的交點
(5)高中函數(shù)的二次函數(shù)的性質(zhì)
、俸瘮(shù)的圖象關(guān)于直線對稱。
、跁r,在對稱軸()左側(cè),值隨值的增大而減少;在對稱軸()右側(cè);的值隨值的增大而增大。當時,取得最小值
、蹠r,在對稱軸()左側(cè),值隨值的增大而增大;在對稱軸()右側(cè);的值隨值的增大而減少。當時,取得最大值
9高中函數(shù)的圖形的對稱
(1)軸對稱圖形:①如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。②軸對稱圖形上關(guān)于對稱軸對稱的兩點確定的線段被對稱軸垂直平分。
(2)中心對稱圖形:①在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。②中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
方程的求解方法
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).
【軌跡方程】就是與幾何軌跡對應的代數(shù)描述。
一、求動點的軌跡方程的基本步驟
、苯⑦m當?shù)淖鴺讼,設出動點M的坐標;
、矊懗鳇cM的集合;
⒊列出方程=0;
、椿喎匠虨樽詈喰问;
、禉z驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
、诚嚓P(guān)點法:用動點Q的坐標x,y表示相關(guān)點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
、磪(shù)法:當動點坐標x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
*直譯法:求動點軌跡方程的一般步驟
、俳ㄏ——建立適當?shù)淖鴺讼?外語學習網(wǎng)
、谠O點——設軌跡上的任一點P(x,y);
③列式——列出動點p所滿足的關(guān)系式;
、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
、葑C明——證明所求方程即為符合條件的動點軌跡方程。
數(shù)列前n項和
某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2 www.Examw.com
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
三角函數(shù)是以角度(數(shù)學上最常用弧度制,下同)為自變量,角度對應任意角終邊與單位圓交點坐標或其比值為因變量的函數(shù)。
這一部分的重點是一定要從初中銳角三角函數(shù)的定義中跳出來。在教學中,我注意到有些學生仍然在遇到三角函數(shù)題目的時候畫直角三角形協(xié)助理解,這是十分危險的,也是我們所不提倡的。三角函數(shù)的定義在引入了實數(shù)角和弧度制之后,已經(jīng)發(fā)生了革命性的變化,sinA中的A不一定是一個銳角,也不一定是一個鈍角,而是一個實數(shù)——弧度制的角。有了這樣一個思維上的飛躍,三角函數(shù)就不再是三角形的一個附屬產(chǎn)品(初中三角函數(shù)很多時候依附于相似三角形),而是一個具有獨立意義的函數(shù)表現(xiàn)形式。
既然三角函數(shù)作為一種函數(shù)意義的理解,那么,它的知識結(jié)構(gòu)就可以完全和函數(shù)一章聯(lián)系起來,函數(shù)的精髓,就在于圖象,有了圖象,就有了所有的性質(zhì)。對于三角函數(shù),除了圖象,單位圓作為輔助手段,也是非常有效——就好像配方在二次函數(shù)中應用廣泛是一個道理。
三角恒等變形部分,并無太多訣竅,從教學中可以看出,學生聽懂公式都不難,應用起來比較熟練的都是那些做題比較多的同學。題目做到一定程度,其實很容易發(fā)現(xiàn),高一考察的三角恒等只有不多的幾種題型,在課程與復習中,我們也會注重給學生總結(jié)三角恒等變形的“統(tǒng)一論”,把握住降次,輔助角和萬能公式這些關(guān)鍵方法,一般的三角恒等迎刃而解。關(guān)鍵是,一定要多做題。”,更多信息精品學習網(wǎng)將第一時間為廣大考生提供,預祝各位考生報考到心儀的大學!
高考數(shù)學一輪復習必備知識點總結(jié)就分享到這里了,除了知識點的復習外,大家還要多做練習題,2017年高考數(shù)學各類壓軸題及解析和高考數(shù)學不等式壓軸題及詳細答案,供大家練習!
(責任編輯:郭峰)
分享“高考數(shù)學一輪復習必備知識點總結(jié)”到: