"/>
這一部分內(nèi)容比較豐富,包括費(fèi)馬引理、羅爾定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求會(huì)證。
費(fèi)馬引理的條件有兩個(gè):1.f'(x0)存在2.f(x0)為f(x)的極值,結(jié)論為f'(x0)=0?紤]函數(shù)在一點(diǎn)的導(dǎo)數(shù),用什么方法?自然想到導(dǎo)數(shù)定義。我們可以按照導(dǎo)數(shù)定義寫出f'(x0)的極限形式。往下如何推理?關(guān)鍵要看第二個(gè)條件怎么用。“f(x0)為f(x)的極值”翻譯成數(shù)學(xué)語(yǔ)言即f(x)-f(x0)<0(或>0),對(duì)x0的某去心鄰域成立。結(jié)合導(dǎo)數(shù)定義式中函數(shù)部分表達(dá)式,不難想到考慮函數(shù)部分的正負(fù)號(hào)。若能得出函數(shù)部分的符號(hào),如何得到極限值的符號(hào)呢?極限的保號(hào)性是個(gè)橋梁。
費(fèi)馬引理中的“引理”包含著引出其它定理之意。那么它引出的定理就是我們下面要討論的羅爾定理。若在微分中值定理這部分推舉一個(gè)考頻比較高的,那羅爾定理當(dāng)之無(wú)愧。該定理的條件和結(jié)論想必各位都比較熟悉。條件有三:“閉區(qū)間連續(xù)”、“開(kāi)區(qū)間可導(dǎo)”和“端值相等”,結(jié)論是在開(kāi)區(qū)間存在一點(diǎn)(即所謂的中值),使得函數(shù)在該點(diǎn)的導(dǎo)數(shù)為0。
該定理的證明不好理解,需認(rèn)真體會(huì):條件怎么用?如何和結(jié)論建立聯(lián)系?當(dāng)然,我們現(xiàn)在討論該定理的證明是“馬后炮”式的:已經(jīng)有了證明過(guò)程,我們看看怎么去理解掌握。如果在羅爾生活的時(shí)代,證出該定理,那可是十足的創(chuàng)新,是要流芳百世的。
閑言少敘,言歸正傳。既然我們討論費(fèi)馬引理的作用是要引出羅爾定理,那么羅爾定理的證明過(guò)程中就要用到費(fèi)馬引理。我們對(duì)比這兩個(gè)定理的結(jié)論,不難發(fā)現(xiàn)是一致的:都是函數(shù)在一點(diǎn)的導(dǎo)數(shù)為0。話說(shuō)到這,可能有同學(xué)要說(shuō):羅爾定理的證明并不難呀,由費(fèi)馬引理得結(jié)論不就行了。大方向?qū),但過(guò)程沒(méi)這么簡(jiǎn)單。起碼要說(shuō)清一點(diǎn):費(fèi)馬引理的條件是否滿足,為什么滿足?
前面提過(guò)費(fèi)馬引理的條件有兩個(gè)——“可導(dǎo)”和“取極值”,“可導(dǎo)”不難判斷是成立的,那么“取極值”呢?似乎不能由條件直接得到。那么我們看看哪個(gè)條件可能和極值產(chǎn)生聯(lián)系。注意到羅爾定理的第一個(gè)條件是函數(shù)在閉區(qū)間上連續(xù)。我們知道閉區(qū)間上的連續(xù)函數(shù)有很好的性質(zhì),哪條性質(zhì)和極值有聯(lián)系呢?不難想到比較值定理。
那么比較值和極值是什么關(guān)系?這個(gè)點(diǎn)需要想清楚,因?yàn)橹苯佑绊懴旅嫱评淼淖呦颉=Y(jié)論是:若比較值取在區(qū)間內(nèi)部,則比較值為極值;若比較值均取在區(qū)間端點(diǎn),則比較值不為極值。那么接下來(lái),分兩種情況討論即可:若比較值取在區(qū)間內(nèi)部,此種情況下費(fèi)馬引理?xiàng)l件完全成立,不難得出結(jié)論;若比較值均取在區(qū)間端點(diǎn),注意到已知條件第三條告訴我們端點(diǎn)函數(shù)值相等,由此推出函數(shù)在整個(gè)閉區(qū)間上的比較大值和比較小值相等,這意味著函數(shù)在整個(gè)區(qū)間的表達(dá)式恒為常數(shù),那在開(kāi)區(qū)間上任取一點(diǎn)都能使結(jié)論成立。
拉格朗日定理和柯西定理是用羅爾定理證出來(lái)的。掌握這兩個(gè)定理的證明有一箭雙雕的效果:真題中直接考過(guò)拉格朗日定理的證明,若再考這些原定理,那自然駕輕就熟;此外,這兩個(gè)的定理的證明過(guò)程中體現(xiàn)出來(lái)的基本思路,適用于證其它結(jié)論。
以拉格朗日定理的證明為例,既然用羅爾定理證,那我們對(duì)比一下兩個(gè)定理的結(jié)論。羅爾定理的結(jié)論等號(hào)右側(cè)為零。我們可以考慮在草稿紙上對(duì)拉格朗日定理的結(jié)論作變形,變成羅爾定理結(jié)論的形式,移項(xiàng)即可。接下來(lái),要從變形后的式子讀出是對(duì)哪個(gè)函數(shù)用羅爾定理的結(jié)果。這就是構(gòu)造輔助函數(shù)的過(guò)程——看等號(hào)左側(cè)的式子是哪個(gè)函數(shù)求導(dǎo)后,把x換成中值的結(jié)果。這個(gè)過(guò)程有點(diǎn)像犯罪現(xiàn)場(chǎng)調(diào)查:根據(jù)這個(gè)犯罪現(xiàn)場(chǎng),反推嫌疑人是誰(shuí)。當(dāng)然,構(gòu)造輔助函數(shù)遠(yuǎn)比破案要簡(jiǎn)單,簡(jiǎn)單的題目直接觀察;復(fù)雜一些的,可以把中值換成x,再對(duì)得到的函數(shù)求不定積分。
歡迎加入2017年研究生考試QQ交流群:371909432;2018年考研QQ交流群:415272847
歡迎關(guān)注研究生微信公眾號(hào)
特別聲明:①凡本網(wǎng)注明稿件來(lái)源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來(lái)源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來(lái)源于網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系我們溝通解決。
25人覺(jué)得有用
18
2017.02
在研究生考試的沖刺階段,為了使同學(xué)們達(dá)到最佳的考試效果,必須掌握恰當(dāng)?shù)膹?fù)習(xí)方法,確立正確的復(fù)習(xí)策......
18
2017.02
數(shù)學(xué)很難,不過(guò)每年不乏有學(xué)霸考取高分,但是考滿分的學(xué)霸你見(jiàn)過(guò)嗎?今天這篇文章的作者就是一個(gè)大學(xué)霸......
18
2017.02
2017年數(shù)學(xué)試卷的難度從整體上看與往年相當(dāng),基本上沒(méi)有偏題、怪題,題型大部分是往年?碱}型,考生較......
18
2017.02
考研數(shù)學(xué)中,線性代數(shù)的難度一般在高數(shù)和概率統(tǒng)計(jì)之間,且大多數(shù)的考研er認(rèn)為線性代數(shù)試題難度不大,但......
18
2017.02
數(shù)學(xué)基礎(chǔ)復(fù)習(xí)從復(fù)習(xí)課本開(kāi)始,課本基礎(chǔ)知識(shí)點(diǎn)要牢固把握,重要的概念原理一定要記好,融會(huì)貫通。......
18
2017.02
考研數(shù)學(xué)復(fù)習(xí)難度大任務(wù)重,基礎(chǔ)差的同學(xué)要早點(diǎn)開(kāi)始,合理規(guī)劃。小編推薦三大階段復(fù)習(xí)規(guī)劃,該如何安排......